
Journal of Mathematical Chemistry 13(1993)153-165 153 

On general forms for structure of some [ n -  1, 1] ® [~,] 
ff'n inner tensor products with 6 < n < 20, (60) for n even, 

in the context of spin cluster problems 
of multiquantum NMR 

F.P.  T e m m e  

Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6 

Received 27 January 1992; revised 12 May 1992 

Consideration of 5¢~ groups for n even and between 6 < n < 20, (60) is consistent 
with the existence (over a simply reducible (SR) space) of certain similarities in the inner 
tensor product ~ P )  structures associated withp < 2 [n - 1, 1] ® [~.], or - ®  [(n/2) 2] products, 
and for general (even) n for [n - 1, 1] ® [n - 2, 12] ITPs, but not for ITPs involving 
higher general m (p < 3) components, as in [ n -  1, 1] ® [ n -  m, m - 1, 1]. These observations 
provide considerable insight into the nature of van der Waals (3 < n < 20), metallic-, 
or "met-carb-" clusters and n = 12, 20 cage molecules analogous to dodecahedrane (a 
cage, n = 20 molecule) or laC buckminsterfullerene(ane) (n = 60) [A],, [AX] n clusters, 
besides allowing for further combinatorial views on higher Se n group characters and their 
associated group algebra. Mathematical insight to date into the nature of general ITPs 
involving non-SR direct sums has proved less fruitful on account of the number of 
component partitions spanned by specific 1TP maps and their associated multiplicities. 

I. Introduction 

The study of both stable dusters [1-5] and isodynamic molecules [6,7] or 
similar van der Waals hydrogen-bonded clusters [8], in terms of their spin 
statistics [9], rovibrational [10] or wreath product aspects [11,12] has led to a 
renewed interest in the higher-n symmetric (f¢,~) groups, as properties central to an 
understanding of many aspects of cluster physics arising from combinatorial models. 
In addition to its pertinence to the highly topical areas of cageo-13C dodecahedrane 
[5] and 13C6o ([HC]60) fullerenes(-anes), the related superconducting solid phases of 
Mx 13C6o [1,2], or to (H20)20 v a n  der Waals clusters [8], there are rather fundamental 
reasons for interest in higher 5e n groups [12-15] and their inner tensor products 
(ITPs) [12, 15] in the study of multiquantum NMR (MQ-NMR) cluster problems 
[15], as an aspect of spin dynamics [16]. 

Both in deriving the nature of carrier spaces associated with the mapping 
properties under SU2 x ~e,~ in the MQ-NMR of stable (multi) cluster problems [15], 
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and in considering the NMR of (XHm) n isodynamical clusters [7], higher Sen symmetric 
groups play an important role, which we now consider principally for even n within 
6 < n < 20 (or 60). In addition, knowledge of substructures of the symmetric group 
allows coherent superpositional bases over Liouville space to be derived; these 
provide a characterisation of the nature of the pathways for spin coherence transfer 
[17, 18] in MQ-NMR. 

Whilst use of cycle-index formulations [7] over Sen ,l, q3 subduced sym- 
metries [9] may suffice in treating nuclear spin statistics and rovibrational properties 
of stable clusters, MQ-NMR spin dynamics require one to utilise further aspects 
[15, 19-24] of Sen symmetry and its ITPs [12]. The latter arise naturally in the 
formation of Liouville space associated with the spin dynamics of clusters [22,24]. 
However, the occurrence of explicit v recoupling terms in Liouvillian SU2 x Sen 
mapping over H U carder subspaces [20, 22] has an additional combinatorial significance; 
this arises from the observation [ 15, 20, 21] that the combinatorial p-tuples associated 
with v - { . . .  } (kl . . . . .  kn) terms under SU2 x Sen provide identical information to 
that which is implicit in the inner direct product formulation of Liouville spaces 
[15,22,24], i.e. as derived by Latin square construction [19,24] of {I kqv[~,] ))}q from 
{I/M(. ))} sets of Hilbert space. 

Simple p < 3, 4 . . . .  -tuples (Sen) [25] have been found to provide convenient 
inventory labelling for M subset hierarchies [23] of { IIM(. ))} for [A] (t;al) clusters. 
These give rise to higher dualities, whose unitary group aspects (e.g. for I < 3/2 and 
n < 4) were extensively studied in the early 1980's [26]. 

. - ®  [ n -  1, 1] SR Sen-ITP ALGEBRAS from the viewpoint of hooklength 
formalisms 

Reference to any of the standard mathematical treatise on the symmetric 
group [12] only serves to stress how restricted are the known generalities concerning 
the full range of ITPs. Hence, we shall consider a specific set of ITPs, namely those 
derived from ® [n - 1, 1] products generally with p _< 2-tuplar Sen-irreps, since the 
resultant direct sum components constitute a simply reducible (SR) subset over the 
complete { [~] } algebra. 

Combinatorial arguments play essential roles in defining the feasible operations 
of isodynamic, or Sen[~d] wreath product, symmetries of non-rigid van der Waals 
clusters, besides governing expressions for the components of the generalised characters 
of representations of Sen groups. The latter may be obtained directly in terms of 
combinatorial hooklengths (HL) [27] for modest-n Sen groups [28, 29]. Databases of 
explicit 20 _> n > 14 symmetric group properties have been referred to in a recent 
work of Liu and Balasubramanian [13], using classical Schur symmetric functions 
[29] 1) as generators [30]; however, for higher-n symmetric groups, the combinatorical 
HL formulations [28] certainly are more immediately tractable than the classical approach. 

1)For other formal symmetric functions, see ref. [30]. 
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T a b l e  1 

Struc ture  [n - 1, 1] ® [~,] ( p  < 2) d i rec t  p roduc t s  for f¢~, 6 < n _< 20, 60 (all  even) .  

® 

,~,® 
I I I I I I I I I ,~ I I I I I I I I I I 

In] 
[ n - l ,  1] 

[n - 2, 2] 

[n - 2, 12] 

[n - 3, 3] 

In - 4 ,  4 ]  

[n  - 5 ,  5]  

[ n -  6, 6] 

In - 7 ,  7]  

In - 8 ,  8] 

In - 9 ,  9]  

w 

1 

1 

1 1 1 

1 1 1 1 1 

1 1 1 - 1 1 

- 1 - 1 1 - 1 1 

1 1 1 - * 1 1 

1 * 1 1 

1 - 

- -  ; for  ® [ n -  m, m] w i th  m <_ n /2 ,  whereas  

1 1 

1 1 1 1 

1 - 1 1 1 1 

1 - 1 1 

1 - 

for  [n - 1, 1] ® [ (n /2 )  2] = [ (n /2)  + 1, (n /2)  - 1] + [(n/2) ,  (n /2)  - 1, 1]; n e v e n  

1 1 

1 1 . .  

a)A speci f ic  p _< 3 ® [ 2 ]  w h i c h  exh ib i t s  an  SR I T P  s t ruc ture  ove r  {[X]}. 

On the basis of  the specific ® [ n -  1, 1] ITPs summarised in general form in 
table 1 and the specific X~lz, l~ (9°n) representational characters of  table 2, one may 
establish the nature and consistency of three general properties for n-even Sen symmetry. 
On taking a general condition of  (n/2) > m > 0, the [n - 1, 1] ® In - m, m] ITP 
becomes an SR direct s u m  within 

[ n - l ,  1] ® I n -  m, 

+ [ n - ( m + l ) ,  (m + l)] + [n - (m + l), m, 1], 

m ] = [ n - m + l ,  m - 1 ] + [ n - m ,  m ] + [ n - m ,  ( m - l ) ,  1] 

(1) 

whose ITP dimensional  order is simply 

(n - 1) (n - 2m + 1) n!/{m! (n - m + 1)!}, (2) 

which f o r / [ n  - 1, 1] ® [ ~ ] / w i t h i n  2 < m < 4 and arbitrary n takes the respective 
values 



156  

¢ q  

[ -  

g ~  

@ 

0 
Za 
¢) 

.[ 

@ 

-,$- 

H 

v 

© 

$ 
-.,... 

II 

[6 '6 - u]  

[[ 'L '8 - u ]  

[8 '8  - u]  

[I '9 'L - u] 

[L 'L - u]  

[I  '~; '9 - u]  

[9 '9 - u] 

[ [  't~ '~ - u] 

[~ 'g  - u]  

, 

[z~: '1~ - u]  

[ [  '~ "e - u] 

[t~ 'V-  u] 

[¢[ ' [  - u]  

[ [  ' [  '~ - u]  

[~ 'l; - u]  

[zI ' [ -  u]  

[Z '~: - u]  

[ !  'I - u ]  

[u] 

(,q 

O ~ O  

¢q 

¢,q 

¢"4 

I I 

0 c'~ 

...., 

L",. 

00 
0 

¢'4 
c¢1 

t " -  

C~ 

I¢,-- 

Lt~ 

00 

("4 

Q 

,-¢ 
II 



F.P. Temme, Generalised structure of  [~.] ® [n - 1, 1] Sfn ITPs 157 

and 

[n(n - 1)(n - 3)12}, {n(n - 1)2(n - 5)/6}, 

[(n(n - 1)2(n - 2) (n - 7)/24}. 

For corresponding ITPs involving [(n/2) 2] irreps we have m = (n/2), but now 
only need to retain the first of the p < 2 and p < 3 (-tuplar) irreps components, since 
the remaining terms of eq. (1) are outside the 2-tuple bounds. Hence, for even 
general n, 

[n - 1, 1] ® [(n/2) 2] = [(n/2) + 1, (n/2) - 1] + [(n/2, ((n/2) - 1), 11, (3) 

giving a dimensional order expression of the form 

(n - 1) n ! / { ( n / 2  + 1)! (n/2)! }. (4) 

A generalized reduction of  the individual orders of the RHS terms of  eq. (3) to this 
form, discussed later, provides additional support for the form of eq. (3). 

On examining the analogous [ n - 1 ,  1]® ITPs derived from the initial 
couple of  3-tuplar So,,-partitions, it is seen that of ® In - m, (m - 1)1] products, only 
I n -  1, 1] ® I n -  2, 12] gives rise to an SR direct sum over {[Z]} space within 

[n - 1, 1] ® In - 2, 12] = In - 1, 1] + [n - 2, 2] 

+ [ n - 2 ,  12 ] + [ n - 3 ,  2, 1 ] + [ n - 3 ,  13], (5) 

where here we restrict discussion to case n _> 6 and even integer values of  n. Hence, 
the dimensional order expression becomes 

/ [ n -  1, 1] ® [ n -  2, 1 2 ] / =  ( n -  2 ) ( n -  1)2/2. (6) 

The consistency of these relationships may be demonstrated by inspection of 
tables 1 and 2 within the 5°n group algebras for n _<_ 12, whereas for 14 < n < 20 
additional combinatorial data (or database) provides the requisite support for the 
assertion presented here; the original mathematical conjectures arose from combinatorial 
reasoning and a specific interest in the properties of  simply reducible algebras. 

As a demonstration of the assertion of  eq. (1), consider m of  [ n - 1 ,  1] 
® [n - m, m] over 5°8, 9'12 and 5°20 for m of, respectively, 3, 5, or 6; the specific 
equations are 

/[7, 1]®[5,  3]/(SOs) =116, 211+115, 311+/[5,  2, 11 /+ / [4211+/ [4 ,  3, 1]/ 

or 1 9 6 = 2 0 + 2 8 + 6 4 + 1 4 + 7 0 ,  (7) 
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/[11, 1]®[7,  5]/(5012) =/[8 ,  4 ] / + / [ 7 ,  5 ] / + / [ 7 ,  4, 1 ] / + / [ 6 1 ] / + / [ 6 ,  5, 1]/ 

or 3267 = 275 + 297 + 1408 + 132 + 1155, (8) 

/[19, 1] ® [14, 6]/(5020) =/[15, 5] / +/[14, 6] / +/[14, 5, 1] / +/[13, 7] / +/[13, 6, 1] / 

or 441 921 = 10 659 + 23 256 + 12 125 + 38 760 + 248 121, (9) 

and retains the general form of eq. (1), within the analytic dimensionality of  eq. (2). 
Likewise in the context of eq. (3), the group algebras provide the set of 

properties such that for a range of 50, groups, 

® [(n / 2) 2] / } - {25, 98, 378, 1452}, for 6 < n < 12 (even), (10) [ / [ n  - 1,1] 

and 

[/ ® /} ---- {21 450, 82 654, 319 124}, for 16 < n < 20 (even) (11) 

as shown in the detailed terms, 

/[11,1] ® [62]/(501z) = / [ 7 5 ) / + / [ 6 5 1 ] / =  297 + 1155, 

/[19,1] @ [102)/(5°20) = / [ 1 1 , 9 ] / + / [ 1 0 , 9 1 ] / = 4 1  9 9 0 + 2 7 7  134. (12) 

In addition, the reduction of  the dimensional order derived from general RHS irreps 
of  eq. (3) for arbitrary n from 

n! 3 { ( n / 2 -  1)!(n/2 + 2)! }-1 + n! {(n/2)!(n/2 + 2)! }-12(n/2 + 1) (n/2 - 1), (13) 

becomes 

{n!/{(n/2 + 1)! (n/2)!} } {3n + (n + 2)(n - 2)}/(n + 4) 

= { } { ( n -  1)(n + 4)/(n + 4)}; (14) 

this provides the form implicit in the LHS ofeq. (4) and hence supports the combinatorial 
arguments underlying the mathematical conjecture. 

For specific n, the initial p < 3 partition [n - 2, 11] gives rise to the following 
set of ITP dimensionalities: 

/ [ n - l ,  1 ] ® [ n - 2 , 1 z ] / = { 5 0 ,  147, . , 6 0 5 , . ,  1575, 2312, 3249}; 

for 6 < n < 20. (15) 
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In the n = 20 case, we note that 

/[19, 1] ® [18, 12] / = 19 x 171 - 19 + 170 + 171 + 1920 + 969 = 3249; (16) 

similarly, from hooklength enumerations of  specific Z~.a'}(fC~0)s, one obtains 

/ [ 5 9 , 1 ] ® [ 5 8 , 1 2 ] / = 1 0 0  9 4 9 = 5 9 + 1 7 1 0 + 1 7 1 1 + 6 4  9 6 0 + 3 2  509, (17) 

in accordance with the analytic dimensional  order, eq. (6). However,  the task of  
f inding the group algebra for such high-n symmetric  groups, even over l imited 
subdomains of  characters fo rp  < 2, 3-tuplar [~]s, is not trivial, al though in principle, 
the X~.~ characters are inherent in hooklength formalisms discussed by both 
Coleman [28] and in a recent text by Krishnamurthy [30]. 

In contrast, the f (p ,  n) structure of  the p-tuples is directly accessible using 
bijective mappings  [25, 30, 31 ] with 

{ f (p ,  20) - { 1, 10, 33, 64, 84, 90, 82, 70, 54, 4 2 , . . }  l < p < 1 0 ,  (18) 

{f (p ,  60) - {1, 30, 1575, 5260, 12736 , . .}  p -_. 5, (19) 

and P20, P6o Gaussian factors of  627 and 966 467, respectively. 
The subsets of  [~] partitions contained within the p < 3 . .  : . . .  : number  

partitions { : n - m, m - 2, 1 : } or { : n - m, m - 2, 2 : } for n < 20 symmetric  groups 
have been discussed [32, 33] only recently; neither are such ideas to be found in the 
earlier standard reference works [25, 31], to our knowledge.  

3. SR-ITPs for n-odd 5e n groups 

Whilst  the forms of  eqs. (1), (3) may be similarly applied with correct {[~]} 
sets generated (as ascertained by 5°11 from an earlier table [13]), the ITPs derived 
from [ n -  1, 1] ® [(n + 1)/2, ( n -  1)/2] closest to the centraliser partition differ strongly. 
In fact, the necessary equation for n odd which replaces eq. (2) has four terms and 
takes the form 

[n - 1 , 1 ]  ® [(n +1) /2 ,  (n - 1 )  / 2] - [n - m +1,  n - m ] + [ n - m ,  n - m - l /  

+ [n - m, n - m - 2, 11 + [(n - m - 1) 2,11 (20) 
within 

/ ® / - 2(n - 1) n!/{((n - 1)/2)! ((n + 3)/2)! }. (21) 

The continuance of  this form to higher  odd-n symmetric  groups was not examined 
but may  be derived by computat ion to n = 17(20) from the Balasubramanian database 
referred to in ref. [13]. 
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4. - ® [ ( n / 2 )  2] aspects of more general non-SR ITP algebras 

For ® [(n/2) 2] restricted aspects of  ITP algebras for even values fen groups, 
several generalised forms, of  SR maps within generally non-SR algebra, may be 
discerned, including for ~ = (n/2), 

[ n -  2,2]  ® [(n/2) 2 ] --> [~ + 2,~ - 2] + [~ + 1,~ - 2,1] + [~2] 

+ [ ~ , ~ - 1 , 1 ) + [ ~ , ~ - 2 , 2 ] + [ ( ~ - 1 ) 2 , 1 2 ]  (22) 

of  dimensional order for even general n, 

[ [n - 2, 2] ® [(n/2) 2 ] / = (n(n - 3)/2) × n ! / { ( n / 2  + 1)! (n/2)! }. (23) 

By contrast, 

[n - 2, 12 ] ® [(n/2) 2 ] --~ [~ + 1, ~ - 1] + [~ + 1, ~ - 2, 1] 

+ [~, ~ - 1, 1] + [~, ~ - 2, 12) + [(~ - 1) 2, 2] (24) 

within the analytical expression for dimensional order, 

] [n - 2, 12 ] ® [(n/2) 2 ] / = (n - 2) (n - 1) / 2 × n!/{(n/2 + 1)! (n/2)! }. (25) 

The detailed combinatorial reasoning behind eq. (22) is contained within the specific 
even-n symmetric group algebras, as in 

/ [4 ,2]  ® [32]/(5P6) = / [ 5 , 3 ] / + / [ 4 , 1 2 ] / + / [ 3 2 ] / + / [ 3 2 1 ] / . .  +/[2212] / 

within 
45 = 5 + 10 + 5 + 16 + 9, (26) 

/[6,2] ® [42]/(~) = / [ 6 , 2 ] / + / [ 5 , 2 , 1 ] / + / [ 4 2 ] / + / [ 4 , 3 , 1 ] / +  / [4 ,22]/+ / [3212]/ 

within 
280 = 20 + 64 + 14 + 70 + 56 + 56, (27) 

together with the 5°12 and 5P20 relationships, 

/[10, 2] ® [62]/= / [84] / + / [ 7 , 4 , 1 ] / + / [ 6 2 ] / + / [ 6 , 5 , 1 ] / +  / [6 ,4 ,2 ] /+ / [52 ,  12]/ 

within 
7128 = 275 + 1408 + 132 + 1155 + 2673 + 1485, (28) 

and 
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/[18,2] ® [102]/=/[12,81/+/[11,8,1]/+ 11102]/+ / [10,9,1]/+/[10,8,2]/+/[9212]/ 

within 

2855 320 = 48 450 + 413 440 + 16 796 + 277 134 + 1469 650 + 629 850. (29) 

Similarly from the relationships (24), (25), one finds under 5°6 and 5O8 symmetries 

/[412 ] ® [ 3 2 ] / = / [ 4 2 ] / +  ] [ 4 1 2 ] ] + / [ 3 , 2 , 1 ] / + / [ 3 , 1 3 ] / + / [ 2 3 ] /  

for which 
5 0 = 9 +  10+ 16+ 1 0 + 5  (30) 

and 

/[612]/@ [42] /=  ] [ 5 3 ] / + / [ 5 , 2 , 1 ] / + / [ 4 , 3 , 1 ] / / [ 4 , 2 , 1 2 ] / + / [ 3 , 2 2 ] /  

within 
294 = 28 + 64 + 70 + 90 + 42. (31) 

The corresponding ITPs under n = 12 and 20 symmetric groups, respectively, show 

][10,12 ] ® [62] /=  ] [75]]+  ] [7 ,41]]+ ] [6 ,51]]+ ][6 ,412]]+ ][52,2]]  

for 
7260 = 297 + 1408 + 1155 + 3080 + 1320, (32) 

and 

/[18, 12 ] ® [I02] / =/[11, 9]] + ][11,81] ]+  ] [10,91] ] + ] [10, 812] ] + ] [922] ] 

for 
2 872 116=41 9 9 0 + 4 1 3 4 4 0 + 2 7 7  134+ 1534 896+604656.  (33) 

For odd-values n symmetric group ITP algebra, rather similar combinatorial 
arguments based on high-n symmetric group trial solutions may well exist to provide 
us with the analogous relationships to those of eqs. (22)-(25) above, but will 
require more detailed consideration of the product algebras of 5e11, 9°13 and 5°15 
inherent in rather extended group algebras [13], as a consequence of the larger 
number of partitional components spanned by n-odd 5O,~ ITP algebras. 

5. Mapping relationships between 5o.-number partitions and Sen-spin algebras 

Applications of the above material arises in two quite distinct mathematical 
ways for extended spin systems, outlined earlier. The first is concerned with direct 
generation of LiouviUe space from F(SOn) associated with the analogous spin problem 
in Hilbert space [34]; in contrast, the second application considers the symmetry 
inherent in the combinatorial number partitions, : n - r - r', r, r ' . .  : or p-tuple words 
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over either Hilbert spin space, or the explicit Liouville subspaces which derive from 
recoupling v terms defining the carrier subspace {Hv} set. Both these aspects have 
been outlined at some length elsewhere [15c, 20, 21]. The latter applications arise 
from the implicit  mapping between a 50,, p-tuple and a specific set of 50,, partitional 
irreps so that 

{ : n - r - r ' ,  r, r '  . . . .  : } (50n) --) R { [/~] (50") }, (34) 

for R a correlation matrix and {[;I,]} a unit column vector, as in, for example,  

: 12 :  1 

:11 ,1 :  1 

: 1 0 , 2 :  1 ---) 
: 10, 1,1 1 

: 9 , 3 :  1 

: 9,2,1 : 1 

1 

1 1 

2 1 1 

1 1 0 

2 2 1 

"[12] ' 

[11, 1] 

[10, 2] 

[10,1, 1] 

[9, 3] 

, [9,2,1] 

(5°12). (35) 

As a consequence, there exist various homorphic maps of  the p-tuple 50,, words on 
to F(50,, ,1, q3) irreps of a subduced symmetry, with {F'(50" ,1, q3)} a unit vector, so that 

{ : n - r - r ' , r , r ' ,  . .  "} (50")---) R'{ t='(50" ,1,~)}, (36) 

where R '  is a further correlation matrix, as in 

(10111 (3 811 7 
--~ U(5012 $ As) (37) 

: 9 , 2 , 1 :  11 44 55 33 3 

for ~ '  a unit  vector over the irreps of  the subduced symmetry.  
The results of  such combinatorial  mathematical models,  with their marked 

similarity to the classical combinatorial  problem [30] of  distinct coloured non- 
identical balls, is the derivation of  maps, 

[2,] (50") ~ F(50" $ "3), (38)  

a subduced symmetry correlation property frequently appended to 50,, character 
tables. Hence, eqs. (35), (38) yield the detailed correlations 

I 
[12] ' 
[1 1, 1] 
[10, 2] 
[10, 1,1] 
[9, 3] 
[9, 2,1]~ 

1 

2 ....) 

2 
4 

1 1 
4 6 1 
4 3 4 
12 10 9 
20 28 16 1 4 

9 
16 ~3 

(5012 "]" As). (39) 
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Similar maps for 9°,', n = 5, 6, 7, 12 and 20 have been derived and discussed elsewhere, 
and summarized in refs. [ 15, 21]. Equation (39) extends the earlier conclusions of 
Balasubramanian et al. [9b], both in focusing on the insertion of [~] (5012) irreps into 
the symmetry chain between SU2 and I'(5012 $ As), and by its ability to derive 
subduced irreps associated with higherp-tuplar component irreps of the 5012 algebra. 
Naturally, the subduced symmetry associated with specific 5012 number partitions 
(p-tuples) provides firm evidence for the latter's [~,] partitional decomposition 
within the mappings discussed above in eq. (35). 

6. Nature of applications of 50n ITP algebras and concluding remarks 

Interesting recent experimental work on "met-carb" pentagonal dodecahedral 
clusters [TisCi2 ] [35] (but as a 13C cluster), as well as solid-state work on 13C- 
cubane (mainly in a plastic phase) [36], offer examples of unusual spin clusters, 
[A]85/2 @ [X]I 2 spin system under 5012 ']" T and [AX]8 (liquid state) problem under 
508 ,l, O finite group symmetries, respectively. In addition, the borohydride ion 
[I1BH] 2- 12 species has been reconsidered [15,32]; the multinuclear M~(13Co),'L 
diamagnetic coordination clusters for n = 15, 18 and M = Pt, Rh, Ru of ref. [4c] 
provide further unusual subduced spin symmetry problems of possible NMR interest. 
These comments serve to stress the existence of extended spin cluster problems 
providing additions to earlier work [26, 34]. 

Further consideration of other aspects of non-SR ITP algebras is deferred, 
since it is more pertinent to related work on met-carba and cage ions [37]. 

Both as an auxiliary group of SU unitary symmetry and especially within 
SU × 50," duality, it is well known from the work of Li and Paldus [38] and from 
the properties of boson pattern algebra [39], that the 50," group provides a particularly 
direct insight into angular momentum physics of many-spin problems with their 
associated scalar invariants. Such ideas carry over into our understanding of multi- 
quantum coherence transfer in MQ-NMR on noting the existence of a Heisenburg 
superalgebra over si bosons [19,20] derived from commutator properties of super- 
operators inherent in spin dynamical formalisms. 

Indeed, such ideas allow the formulation [20] of Yamanouchi index tensorial 
bases and Wigner fundamental unit superoperators over tensorial bases of even 0 
and 2 (= 1) ki indices over the augmented space for more extended problems than 
the few body SU2 x 5°3 interactions, whose non-square unit tensor operators [40], 
generating well-known NMR angular momenta coupling ideas, have been discussed 
purely from the standpoint of unitary algebra. The language of cooperative duality 
over simple reducible Liouville carrier subspaces [19] offers greater insight, since 
it draws on the scalar invariant properties associated with 50," groups [22-24,41]. 

Finally, on the purely symmetric group aspects, clearly the analytic and other 
expressions for the dimensional order of ITP algebras provide strong support for 
our combinato'rial reasoning about regular ITP structure for 50,, groups having n 



164 F.P. Temme, Generalised structure of [~] ® [ n -  1, 1] 5¢~ ITPs 

greater than the number of component irreps spanned by specific ITPs. Mathematical 
conjectures about the corresponding regularities for non-SR ITP algebras are more 
difficult and require detailed knowledge of still higher Se n groups; further physical 
insight from a combinatorial approach without the need to compute the full product 
algebra may yet be available from a wider dissemination of Liu and Balasubramanian's 
descriptions of the characters of the Sen groups [13] for n < 18, . . (20) .  
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